

Greater Cambridge Chalk Stream Project

Water Quality Monitoring Plan and Evidence Framework

Robert Martyr
Project Lead, Greater Cambridge Chalk Stream Project
Cambridge City Council

November 2025 v2

Executive summary	7
Introduction	9
1. Project aims, scope and monitoring objectives	10
1.1 Overall purpose of the monitoring programme	10
1.2 Why water quality is the primary focus.....	11
1.3 Spatial scope of the monitoring programme.....	11
1.4 Temporal scope and resolution	12
1.5 Core monitoring objectives	12
1.6 Hypothesis led approach	12
1.7 Relationship to restoration and management.....	13
2. Chalk stream pressures and ecological sensitivity	13
2.1 Chalk streams as low tolerance systems.....	13
2.2 Nutrient enrichment and trophic imbalance.....	13
2.3 Fine sediment accumulation and habitat degradation.....	14
2.4 Dissolved oxygen instability and temperature effects.....	14
2.5 Hydrological alteration and abstraction pressure.....	14
2.6 Urban runoff and sewage contamination.....	14
2.7 Land management and diffuse pollution.....	15
2.8 Invasive non native species and pressure amplification.....	15
2.9 Historic modification and habitat simplification.....	15
2.10 Climate change as a pressure multiplier.....	15
2.11 Implications for monitoring and restoration	15
3. Monitoring framework design and rationale	16
3.1 Monitoring as a diagnostic system rather than a survey.....	16
3.2 Integration across chemical, physical and biological evidence.....	16
3.3 Temporal structure and resolution	16
3.4 Spatial design and site selection.....	17
3.5 Parameter selection guided by ecological mechanism.....	17
3.6 Hypothesis testing and adaptive learning	17
3.7 Proportionality and resource constraint.....	17
3.8 Relationship between monitoring and restoration sequencing	18
3.9 Governance and credibility.....	18
3.10 Summary.....	18
4. Water quality parameters, units and chalk stream ecological relevance	18

4.1 Purpose and principles of parameter selection.....	18
4.2 Nutrients: phosphorus and nitrogen	19
4.3 Dissolved oxygen	19
4.4 Water temperature.....	20
4.5 Electrical conductivity and total dissolved solids	20
4.6 Turbidity and suspended sediment	20
4.7 Deposited fine sediment.....	21
4.8 Flow context	21
4.8a Flow Context and Interpretation	21
4.9 Microbiological indicators.....	21
4.10 Integration with biological response	22
4.11 Restoration sequencing and feasibility	22
4.12 Summary of units and indicative chalk stream thresholds.....	22
4.13 Chalk stream flora and fauna most sensitive to water quality pressure	23
4.14 Role of thresholds in evidence-led restoration.....	23
5. Monitoring methods and field protocols	23
5.1 Overview of monitoring framework	23
5.2 Weekly water quality monitoring	23
5.3 Field measurement and laboratory analysis.....	24
5.4 Spatial structure of weekly monitoring	24
5.5 Continuous temperature and total dissolved solids monitoring	25
5.6 Sediment monitoring.....	25
5.7 Bank erosion assessment.....	25
5.8 Fixed point photography.....	25
5.9 Biological monitoring.....	25
5.10 Quality assurance and consistency.....	26
5.11 Health and safety considerations	26
5.12 Adaptive monitoring.....	26
5.13 Monitoring frequency, temporal coverage and diagnostic purpose	26
5.14 Monitoring frequency, parameters and diagnostic purpose table	26
5.15 Relationship to adaptive monitoring	27
5.16 Quality Assurance and Methodological Controls	27
6. Citizen science, training and data credibility.....	28
6.1 Role of citizen science within the monitoring framework.....	28

6.2 Avoiding the limitations of low-quality citizen science.....	28
6.3 Training and competency development	28
6.4 Standardised protocols and repeatability.....	29
6.5 Equipment selection and limitations	29
6.6 Quality assurance and oversight.....	29
6.7 Integration with professional and academic expertise.....	29
6.8 Value of citizen science for chalk stream restoration	30
6.9 Transparency and trust	30
7. Sediment dynamics, erosion and physical habitat condition.....	30
7.1 Rationale for sediment monitoring in chalk streams.....	30
7.2 Distinction between suspended and deposited sediment	30
7.3 Suspended sediment and turbidity monitoring.....	31
7.4 Deposited fine sediment quantification	31
7.5 Sediment volume, retention and trend	31
7.6 Bank erosion and sediment supply.....	31
7.7 Fixed point photography and habitat context	32
7.8 Sediment composition and specialist analysis.....	32
7.9 Relationship between sediment dynamics and restoration success	32
7.10 Avoiding reliance on walkover assessment	32
8. Biological indicators and integration with water quality and sediment evidence	33
8.1 Purpose of biological monitoring within the GCCSP framework.....	33
8.2 Selection of biological indices.....	33
8.3 Whalley, Hawkes, Paisley and Trigg macroinvertebrate index.....	33
8.4 Mean Trophic Rank macrophyte assessment	33
8.5 Justification for not prioritising Riverfly and eDNA indices	34
8.6 Integration with water quality and sediment data	34
8.7 Temporal considerations and repeat surveys	34
8.8 Role in restoration sequencing and evaluation	34
8.9 Summary.....	35
9. Continuous monitoring of temperature and total dissolved solids	35
9.1 Purpose of continuous monitoring.....	35
9.2 Relationship between spot measurements and continuous data.....	35
9.3 Diagnostic value of temperature data	36
9.4 Diagnostic value of total dissolved solids	36

9.5 Budgetary and methodological considerations	36
9.6 Integration with wider monitoring framework.....	36
10. Contribution to catchment partnerships and evidence-based catchment planning	36
10.1 Purpose and relevance at catchment scale	36
10.2 Filling critical evidence gaps in catchment planning.....	37
10.3 Informing prioritisation and sequencing of interventions.....	37
10.4 Urban–rural contrasts and attribution.....	37
10.5 Transferability and upscaling of findings	37
10.6 Supporting regulatory engagement and funding decisions.....	38
10.7 Complementarity with catchment partnership objectives.....	38
10.8 Summary.....	38
11. Data interpretation, thresholds and evidence integration	38
11.1 Principles of interpretation.....	38
11.2 Interpretation of weekly water quality data.....	39
11.3 Interpretation of continuous temperature and TDS data.....	39
11.4 Interpretation of sediment data	39
11.5 Integration with biological evidence	39
11.6 Use of thresholds and benchmarks	39
11.6a Nutrient reporting conventions and ecological relevance.....	40
11.7 Triggering further investigation	40
11.8 Communicating uncertainty	40
11.9 Role in decision making	40
11.10 Use of monitoring data to evidence chalk stream pressures and inform action.....	40
11.11 Dissolved Oxygen Risk and Trigger Framework	41
12. Realistic costs, equipment, training and resource requirements.....	42
12.1 Purpose of cost transparency	42
12.2 Proportionality and allocation of resources	42
12.3 Equipment selection and justification	42
12.4 Example indicative costs per monitoring group per annum.....	42
12.5 Health, safety and responsible waste management.....	43
12.6 Training, competence and volunteer support	43
12.7 Data management and storage	44
12.8 Why low-cost alternatives are insufficient.....	44
12.9 Cost-effectiveness at project scale.....	44

12.10 Summary.....	44
13. Conclusion and forward direction.....	44
Map of GCCSP Case Study Chalk Stream Sites.....	46
Integrated GCCSP water quality monitoring framework and evidence flow	47
References.....	48

Executive summary

The Greater Cambridge Chalk Stream Project water quality monitoring plan sets out a practical, evidence-led programme to diagnose the pressures limiting chalk stream recovery across Greater Cambridge. It responds to a clear local context: more than two decades of in channel restoration have not delivered sustained ecological recovery in Cambridgeshire chalk streams, and characteristic chalk stream flora and fauna continue to decline while eutrophic and sediment tolerant communities increasingly dominate. The plan therefore places diagnosis before intervention and uses robust monitoring to identify the dominant, interacting pressures that must be addressed if restoration is to succeed.

The monitoring network focuses on rural chalk stream case study sites in South Cambridgeshire at Linton and Abington, urban chalk stream sites within Cambridge at Hobson's Brook, Cherry Hinton Brook, Coldham's Brook and the East Cambridge Main Drain, plus two chalk springheads at Nine Wells and Giant's Grave. This spatial design enables comparison across land use contexts while remaining sufficiently focused for sustained, repeat monitoring. Case study sites are treated as diagnostic reference reaches that support both site-level decisions and wider catchment planning.

The programme measures a defined suite of parameters linked directly to chalk stream ecological mechanisms and restoration feasibility. Core parameters include phosphate phosphorus, nitrate nitrogen, ammonia, dissolved oxygen, electrical conductivity, pH, temperature, turbidity, flow context, E. coli and total dissolved solids. The programme also quantifies suspended and deposited fine sediment, sediment volumes and retention trends, bank erosion rates using erosion pins, and seasonal habitat condition using fixed point photography. More targeted specialist analysis is deployed where evidence indicates specific pressures, including sediment composition, heavy metals, hydrocarbons and salts, alongside non native species assessment and other specialist ecological surveys where required. Volunteer wellbeing is included as part of responsible programme governance.

Weekly citizen science monitoring provides sustained temporal coverage, builds community capability and generates consistent evidence across sites. Laboratory-based analysis is used for parameters requiring higher precision and safe handling, ensuring data are credible and comparable with professional monitoring. Continuous monitoring is delivered through ThinkSpeak loggers recording temperature and total dissolved solids at 15-minute intervals. This was a deliberate design choice: GCCSP prioritised investment in citizen science delivery and analytical capacity within a limited budget, and selected cost-effective continuous indicators capable of detecting spike events that complement weekly monitoring. Higher-cost continuous systems, including WATR, were considered but were not affordable without undermining the breadth and sustainability of the programme.

Biological assessment is integrated through WHTP macroinvertebrate surveys and MTR macrophyte surveys, selected because they are mechanistically linked to water quality pressures relevant to chalk streams. These biological indices are used as integrative evidence streams, interpreted alongside chemistry and sediment data to test consistency and strengthen causal inference. Riverfly and eDNA approaches have been reviewed and are not prioritised as core tools because they are less effective for diagnosing the chronic, interacting pressures that dominate chalk stream decline in this context.

Data interpretation is governed by triangulation. Conclusions about dominant pressures require alignment across independent evidence lines, including water quality metrics, continuous temperature

and TDS patterns, sediment measures, biological response and physical evidence of erosion and habitat condition. Conflicting signals are treated as evidence gaps that trigger targeted investigation, not as problems to be explained away. This makes the framework robust to scrutiny and reduces the risk of misdirected intervention.

The plan also sets out a realistic account of resources required to generate defensible evidence. Monitoring at chalk stream relevant thresholds requires investment in training, quality assurance, laboratory infrastructure, safe reagent handling and responsible waste disposal. The programme benefits from collaboration with Anglia Ruskin University facilities, enabling biosecure laboratory processing and compliant hazardous waste pathways. Indicative costs are presented transparently to demonstrate that robust evidence has unavoidable costs and that low-tech alternatives would materially reduce diagnostic power.

Finally, GCCSP case study evidence supports catchment partnerships by filling persistent data gaps, enabling pressure attribution across urban and rural settings, and informing evidence-based catchment plans that prioritise interventions with the greatest likelihood of success. As the project develops and volunteer capability increases, the plan anticipates progressive growth in community autonomy, potentially including development of a local citizen science lab-based system, while maintaining safety, governance and data credibility.

Introduction

Chalk streams are among the most ecologically distinctive and globally rare freshwater ecosystems. Their defining characteristics, stable groundwater derived flows, naturally cool temperatures, clear water and low nutrient status, support highly specialised assemblages of macrophytes, invertebrates and fish that are finely adapted to narrow environmental tolerances (Wood and Armitage, 1997; Mainstone et al., 2008). Where these conditions are altered, even subtly, chalk stream ecological integrity is rapidly eroded.

Across Cambridgeshire, decades of in channel restoration have failed to arrest ecological decline in chalk streams. Despite repeated investment in habitat enhancement, channel re profiling and physical works, sensitive chalk stream flora and fauna continue to be replaced by eutrophic and sediment tolerant communities. This pattern is not anomalous. It reflects a fundamental misalignment between restoration practice and the dominant pressures acting on chalk stream systems.

Evidence from across England demonstrates that chalk stream degradation is driven primarily by water quality and hydrological pressures rather than by channel form alone. Nutrient enrichment, fine sediment accumulation, reduced dissolved oxygen stability, elevated temperatures, altered ionic composition, sewage contamination and abstraction related flow reduction act cumulatively to constrain ecological recovery (Mainstone et al., 2008; UKTAG, 2014; Wharton et al., 2017). In such contexts, physical habitat restoration applied in isolation is unlikely to succeed and may mask or even exacerbate underlying dysfunction.

The Greater Cambridge Chalk Stream Project has been established in response to this evidence gap. Its central premise is that effective restoration must be preceded by a robust understanding of water quality pressures and their ecological consequences. This monitoring plan therefore places water quality at the centre of decision making, treating it not as a background variable but as the primary determinant of habitat function, biological viability and restoration feasibility.

Chalk stream ecosystems are particularly vulnerable to short duration and cumulative stress. Many of the pressures that limit ecological function operate episodically or diurnally rather than as sustained exceedances of regulatory standards. Night time dissolved oxygen minima, temperature driven oxygen demand, rainfall driven sediment mobilisation, transient sewage inputs and urban runoff pulses can all exert disproportionate ecological impact while remaining undetected by infrequent sampling (Wood and Armitage, 1997; Wharton et al., 2017). For early life stages of fish, oxygen sensitive macroinvertebrates and specialist macrophytes, these short duration departures from optimal conditions can determine recruitment success or failure.

Traditional walkover surveys and visually based assessments, while valuable for contextual understanding, are insufficient to diagnose these pressures. They cannot quantify nutrient enrichment, resolve oxygen instability, detect episodic pollution or measure fine sediment accumulation within gravel substrates. As a result, decision making based on observation alone risks misidentifying symptoms as causes and directing restoration effort towards interventions that cannot address the underlying constraints.

This monitoring plan has therefore been designed to generate quantitative, temporally resolved evidence capable of identifying the dominant pressures limiting chalk stream ecological function in

Greater Cambridge. The parameters selected reflect established understanding of chalk stream ecology and the mechanisms through which degradation occurs. Nutrients are monitored because chalk streams are naturally oligotrophic and respond ecologically at concentrations well below generic river standards (Mainstone et al., 2008). Dissolved oxygen and temperature are monitored because oxygen availability and stability control respiration, embryo survival and invertebrate community structure. Electrical conductivity and total dissolved solids are monitored as integrative indicators of groundwater influence, urban runoff and wastewater inputs. Turbidity and deposited sediment are monitored because fine sediment directly degrades habitat quality, clogs gravels and alters nutrient cycling. Microbiological indicators are included to identify sewage influence and associated oxygen demand. Flow context is incorporated because abstraction driven flow reduction amplifies all other pressures.

Crucially, the monitoring framework is designed not simply to record values, but to support interpretation. Units, frequency and methods have been selected to align with ecological thresholds, physiological tolerances and known chalk stream response pathways rather than regulatory convenience. Continuous monitoring is combined with weekly sampling and repeat biological assessment to distinguish persistent pressures from transient events and to link water quality conditions to ecological response.

Citizen science plays a central role in delivering the temporal coverage required to detect these dynamics. However, volunteer involvement is structured within a professional framework that separates field sampling from analytical processing, ensures quality assurance and protects participant safety. Laboratory analysis, calibration, data validation and hazardous waste disposal are undertaken within university infrastructure, ensuring that data generated are comparable with regulatory and professional datasets.

The purpose of this monitoring plan is therefore threefold. First, to establish a robust evidence base capable of identifying the dominant water quality pressures acting on chalk streams in Greater Cambridge. Second, to provide a defensible framework for interpreting how these pressures constrain ecological function and restoration success. Third, to support evidence led, proportionate and sequenced intervention that addresses causes rather than symptoms.

By placing water quality at the centre of chalk stream restoration planning, this approach seeks to move beyond repeated cycles of intervention and disappointment, towards a model of restoration grounded in diagnosis, learning and long term ecological resilience.

1. Project aims, scope and monitoring objectives

1.1 Overall purpose of the monitoring programme

The primary purpose of the Greater Cambridge Chalk Stream Project Water Quality Monitoring Programme is to generate robust, high resolution evidence capable of identifying the dominant pressures limiting chalk stream ecological function and restoration success across the Greater Cambridge catchments.

This monitoring programme is not designed as a compliance exercise or a descriptive survey. Its function is diagnostic. Data are collected to test hypotheses about pressure, response and interaction within chalk stream systems, and to provide an evidence base that can guide proportionate, sequenced and sustainable intervention.

The programme explicitly recognises that chalk stream degradation arises from multiple interacting pressures, including nutrient enrichment, fine sediment accumulation, sewage contamination, urban runoff, abstraction related flow reduction, land management practices, invasive species, historic channel modification and climate change. These pressures are expressed through water quality pathways and must therefore be understood through integrated monitoring rather than isolated assessment (Mainstone et al., 2008; Wharton et al., 2017).

1.2 Why water quality is the primary focus

Water quality is treated as the primary focus of the monitoring programme because it governs the viability of chalk stream habitats and species irrespective of channel form. Dissolved oxygen availability, nutrient status, temperature regime, sediment dynamics and ionic composition directly control biological processes such as respiration, growth, reproduction and recruitment.

Where these parameters fall outside chalk stream tolerances, physical habitat enhancement alone is unlikely to deliver ecological benefit. Repeated failure of in channel restoration in Cambridgeshire and elsewhere provides strong evidence that restoration has too often proceeded without sufficient understanding of water quality limitation (Mainstone et al., 2008; Sear et al., 2009).

By prioritising water quality, the GCCSP monitoring programme seeks to ensure that restoration is applied only where conditions are capable of supporting ecological recovery, and that mitigation focuses on causes rather than symptoms.

1.3 Spatial scope of the monitoring programme

The monitoring programme focuses on a network of chalk stream case study sites in both rural and urban contexts across Greater Cambridge. These include:

- South Cambridgeshire chalk streams at Linton and Abington
- Urban chalk stream sites within Cambridge including Hobson's Brook, Cherry Hinton Brook, Coldham's Brook and the East Cambridge Main Drain
- Chalk springheads at Nine Wells and Giant's Grave

These sites have been selected to represent a gradient of pressures, land use contexts and hydrological conditions, while remaining sufficiently focused to allow detailed, repeated monitoring.

By combining rural, urban and springhead environments, the programme is able to explore how pressures differ spatially and how cumulative impacts propagate downstream through the chalk stream network.

1.4 Temporal scope and resolution

The monitoring programme is designed to operate over multiple years, recognising that chalk stream processes and responses are inherently seasonal and that meaningful trends cannot be resolved over short timescales.

Weekly water quality sampling provides the temporal backbone of the programme, allowing gradual change, seasonal patterns and emerging pressures to be identified. Continuous monitoring of selected parameters provides additional resolution, capturing diel and event driven dynamics that are ecologically significant but invisible to infrequent sampling (Wharton et al., 2017).

Repeat biological surveys are used to integrate water quality conditions over time and to validate chemical and physical evidence against ecological response.

1.5 Core monitoring objectives

The monitoring programme has six core objectives.

First, to quantify nutrient status, sediment dynamics, oxygen regime, temperature variability and ionic composition at chalk stream relevant scales and thresholds.

Second, to identify the relative influence of rural diffuse pollution, urban runoff, sewage inputs and abstraction related flow reduction on water quality.

Third, to determine how water quality pressures vary spatially between sites and temporally within sites, including identification of episodic and cumulative stress.

Fourth, to link water quality conditions explicitly to biological response using established macroinvertebrate and macrophyte indices that are sensitive to chalk stream pressures (Walley and Hawkes, 1996; Holmes et al., 1999).

Fifth, to provide an evidence base capable of guiding targeted pollution mitigation, restoration sequencing and evaluation of intervention effectiveness.

Sixth, to ensure that monitoring data are sufficiently robust, transparent and well governed to support scrutiny by regulators, academics and stakeholders.

1.6 Hypothesis led approach

Monitoring under the GCCSP is explicitly hypothesis led. Rather than collecting data without defined purpose, the programme is structured around testable propositions such as:

- Nutrient enrichment is a primary driver of macrophyte community change and oxygen instability
- Fine sediment accumulation limits benthic habitat quality and recruitment success
- Urban runoff and sewage inputs produce identifiable conductivity, microbiological and oxygen signatures
- Reduced flows amplify all other pressures through concentration and reduced assimilative capacity

Data are collected and interpreted to support or challenge these hypotheses, allowing understanding to evolve as evidence accumulates.

1.7 Relationship to restoration and management

The monitoring programme is not an end in itself. Its purpose is to inform action. Data generated are used to determine whether restoration is feasible, what form it should take and in what sequence interventions should be applied.

Where water quality conditions are unsuitable, monitoring provides evidence to support pollution mitigation, abstraction dialogue or catchment scale intervention prior to habitat enhancement. Where conditions improve, monitoring provides a baseline against which restoration success can be evaluated.

This explicit link between monitoring and management ensures that evidence directly supports decision making and avoids the accumulation of data that cannot be translated into action.

2. Chalk stream pressures and ecological sensitivity

2.1 Chalk streams as low tolerance systems

Chalk streams are defined by environmental stability. Their characteristic flora and fauna have evolved under conditions of relatively constant flow, cool temperatures, high water clarity and low nutrient availability. As a result, many chalk stream species exhibit narrow tolerance ranges and limited capacity to adapt rapidly to altered conditions (Wood and Armitage, 1997).

This sensitivity means that pressures which may appear modest in other river types can have disproportionate ecological effects in chalk streams. Small increases in nutrient concentration, fine sediment load or temperature variability can trigger shifts in community composition, reduce recruitment success and alter ecosystem function well before regulatory thresholds are exceeded (Mainstone et al., 2008; UKTAG, 2014).

Understanding chalk stream decline therefore requires attention to subtle, cumulative and interacting pressures rather than reliance on single parameter exceedance.

2.2 Nutrient enrichment and trophic imbalance

Chalk streams are naturally oligotrophic systems. Their plant communities are dominated by species adapted to low nutrient availability and high water clarity. When phosphorus or nitrogen concentrations increase, even slightly, competitive balance shifts in favour of fast growing eutrophic species, leading to loss of characteristic macrophytes such as *Ranunculus* and associated invertebrate communities (Mainstone et al., 2008; Holmes et al., 1999).

Nutrient enrichment also increases biological oxygen demand, contributing to diel dissolved oxygen instability. Night time oxygen depletion can impose acute stress on fish embryos, juveniles and oxygen sensitive macroinvertebrates, even where daytime concentrations appear acceptable (Wood and Armitage, 1997).

Because nutrient driven effects are cumulative and often expressed through biological response rather than chemistry alone, they must be assessed using integrated chemical and biological evidence.

2.3 Fine sediment accumulation and habitat degradation

Fine sediment is a pervasive pressure in many chalk streams, arising from agricultural runoff, bank erosion, urban drainage and channel modification. Unlike coarser substrates, fine sediment infiltrates gravel beds, reducing permeability and limiting oxygen exchange within the hyporheic zone (Sear et al., 1998; Duerdoh et al., 2015).

This process directly affects the survival of fish eggs, lamprey ammocoetes and benthic invertebrates. Fine sediment also binds nutrients, prolonging their retention within the channel and reinforcing eutrophic conditions.

Visual assessment alone is insufficient to diagnose sediment pressure. Quantitative measurement of suspended and deposited sediment is required to understand both delivery and retention processes and to determine whether restoration substrates can function as intended.

2.4 Dissolved oxygen instability and temperature effects

Dissolved oxygen availability is a primary control on chalk stream ecology. While groundwater input often maintains high baseline oxygen concentrations, chalk streams are vulnerable to instability driven by nutrient enrichment, reduced flow and elevated temperatures.

Temperature influences oxygen solubility and biological demand. As temperatures increase, oxygen availability declines while metabolic demand rises, narrowing the margin between supply and demand. Short duration hypoxic events, particularly overnight, can have severe ecological consequences while remaining undetected by infrequent sampling (Wood and Armitage, 1997; Mainstone, 2020).

Monitoring dissolved oxygen and temperature at appropriate temporal resolution is therefore essential for understanding ecological constraint.

2.5 Hydrological alteration and abstraction pressure

Chalk streams depend on sustained groundwater inputs to maintain flow, temperature stability and dilution capacity. Abstraction reduces baseflow, increases residence time and amplifies the impact of all other pressures by concentrating nutrients, sediment and contaminants (Wharton et al., 2017).

Reduced flows also limit the ability of streams to mobilise fine sediment, promoting deposition and further degrading habitat quality. In extreme cases, flow reduction can lead to channel disconnection, thermal stress and loss of refugia.

Because hydrological alteration interacts with water quality rather than acting independently, its effects must be interpreted in conjunction with chemical and physical data.

2.6 Urban runoff and sewage contamination

Urban catchments introduce additional pressures through surface runoff, misconnections and wastewater discharges. These inputs can contribute nutrients, fine sediment, salts, hydrocarbons, heavy metals and microbiological contamination.

Electrical conductivity and total dissolved solids provide useful integrative indicators of urban influence, while microbiological indicators help identify sewage related inputs. Such pressures are often episodic and linked to rainfall or infrastructure performance, reinforcing the need for temporally resolved monitoring.

2.7 Land management and diffuse pollution

Intensive land management within chalk catchments contributes nutrients and sediment through diffuse pathways. These inputs are often spatially variable and temporally episodic, making them difficult to detect through infrequent monitoring.

Diffuse pollution may not produce sharp chemical signatures but can nonetheless exert chronic pressure that limits ecological recovery. Identifying its influence requires sustained monitoring and integration with biological response.

2.8 Invasive non native species and pressure amplification

Non native invasive species such as signal crayfish, Himalayan balsam and *Crassula helmsii* do not act in isolation. They amplify existing pressures by increasing bank erosion, disturbing sediments, altering channel morphology and modifying habitat structure.

These effects reinforce sediment and nutrient pressures and can undermine restoration efforts if not recognised and addressed as part of a wider pressure framework.

2.9 Historic modification and habitat simplification

Historic channelisation, culverting and infrastructure installation have reduced habitat complexity and resilience in many chalk streams. Simplified morphology limits the ability of systems to buffer water quality stress, retain refugia and support diverse communities.

While physical restoration can address some of these impacts, its effectiveness is constrained where water quality pressures remain unresolved.

2.10 Climate change as a pressure multiplier

Climate change acts as a pressure multiplier rather than a standalone driver. Increased frequency of heatwaves, altered rainfall patterns and extended low flow periods intensify nutrient effects, oxygen instability and sediment mobilisation.

This reinforces the need for monitoring frameworks capable of capturing variability and extremes rather than relying on long term averages.

2.11 Implications for monitoring and restoration

The pressures acting on chalk streams in Greater Cambridge are cumulative, interacting and often subtle. Effective restoration therefore requires a monitoring approach that can diagnose multiple pressures simultaneously and identify which constraints are dominant at a given site and time.

By framing chalk stream decline in terms of ecological sensitivity and pressure interaction, this monitoring plan provides the foundation for evidence led intervention and avoids the risk of misdirected restoration effort.

3. Monitoring framework design and rationale

3.1 Monitoring as a diagnostic system rather than a survey

The monitoring framework under the Greater Cambridge Chalk Stream Project is designed as a diagnostic system rather than a descriptive survey. Its purpose is not simply to record conditions, but to identify the mechanisms limiting ecological function and to provide evidence that can guide proportionate, sequenced restoration and mitigation.

This distinction is critical. Monitoring programmes that lack a clear diagnostic structure often generate large volumes of data without resolving causation or informing action. In chalk streams, where pressures are subtle, interacting and temporally variable, such approaches risk reinforcing uncertainty rather than reducing it (Mainstone et al., 2008; Wharton et al., 2017).

The GCCSP framework therefore integrates spatial coverage, temporal resolution and parameter selection to support interpretation rather than accumulation.

3.2 Integration across chemical, physical and biological evidence

Chalk stream degradation cannot be understood through single parameter assessment. Nutrients, sediment, oxygen regime, temperature, ionic composition and flow context interact to constrain ecological processes. Biological communities integrate these pressures over time, reflecting cumulative and episodic stress.

The monitoring framework explicitly integrates chemical, physical and biological evidence. Weekly water quality sampling provides context for continuous data, while biological assessment validates chemical signals against ecological response. Sediment monitoring links physical habitat condition to water quality dynamics.

This integration ensures that no single dataset is interpreted in isolation and that conclusions are supported by multiple independent lines of evidence.

3.3 Temporal structure and resolution

Temporal resolution is a central design consideration. Many of the pressures affecting chalk streams operate at timescales that are not captured by infrequent monitoring. Diel dissolved oxygen minima, temperature driven stress, rainfall related sediment mobilisation and episodic pollution inputs can all exert significant ecological impact without producing sustained exceedance of standards.

The GCCSP framework combines weekly sampling with continuous logging to resolve both baseline conditions and short duration events. Weekly sampling allows seasonal patterns and gradual change to be tracked, while continuous data reveal variability, extremes and exceedance duration.

This combined approach reduces the risk of false reassurance based on average conditions and supports interpretation grounded in ecological relevance (Wood and Armitage, 1997; Wharton et al., 2017).

Continuous temperature and total dissolved solids logging at 15-minute intervals provides the temporal resolution required to characterise diel variability and short-duration stress events, while weekly sampling captures sustained conditions and seasonal trends.

3.4 Spatial design and site selection

Monitoring sites have been selected to represent key chalk stream environments within Greater Cambridge, including rural headwaters, urban reaches and springhead systems. This spatial design allows comparison across land use contexts and pressure gradients while maintaining sufficient focus for detailed interpretation.

Springhead monitoring provides insight into groundwater quality and baseline conditions, while downstream sites reflect cumulative impacts and urban influence. This spatial structure supports attribution by allowing upstream downstream comparison and identification of pressure emergence.

3.5 Parameter selection guided by ecological mechanism

Parameters included within the monitoring framework have been selected based on their demonstrated relevance to chalk stream ecological function. Selection is guided by established literature on chalk stream sensitivity and by the need to capture mechanisms rather than symptoms.

Nutrients are included because they drive trophic imbalance and oxygen demand. Dissolved oxygen and temperature are included because they directly control respiration, recruitment and metabolic stress. Conductivity and total dissolved solids are included as integrative indicators of ionic loading and potential urban or wastewater influence. Turbidity and deposited sediment are included because fine sediment directly degrades habitat and modifies nutrient cycling. Microbiological indicators are included to identify sewage influence and associated oxygen demand.

Flow context is incorporated to interpret concentration effects and to understand how abstraction and hydrological alteration amplify other pressures.

3.6 Hypothesis testing and adaptive learning

The monitoring framework is explicitly hypothesis led. Parameters, frequency and methods are selected to allow specific propositions to be tested, refined or rejected. For example, whether nutrient enrichment or sediment retention is the dominant limiting factor at a given site, or whether oxygen instability arises from organic loading, reduced flow or temperature effects.

As evidence accumulates, hypotheses are revisited and monitoring emphasis adjusted. This adaptive learning approach ensures that the framework remains responsive rather than static and that resources are directed towards the most informative lines of inquiry.

3.7 Proportionality and resource constraint

The framework has been designed with explicit recognition of resource limitations. It does not attempt exhaustive chemical characterisation at all times. Instead, it applies a tiered approach in which core parameters diagnose dominant pressures and trigger targeted specialist investigation where justified.

This proportionality ensures that monitoring effort delivers maximum diagnostic value without dissipating resources across parameters that are unlikely to be limiting.

3.8 Relationship between monitoring and restoration sequencing

A central rationale for the monitoring framework is to inform restoration sequencing. Data are used to determine whether conditions are suitable for physical habitat intervention or whether water quality pressures must first be addressed.

This sequencing reduces the risk of restoration failure and ensures that intervention is applied where ecological response is plausible. Monitoring continues following intervention to evaluate effectiveness and to inform adaptive management.

3.9 Governance and credibility

The monitoring framework operates within a structured governance environment that includes institutional oversight, quality assurance and expert review. This governance ensures consistency, transparency and defensibility, and supports scrutiny by regulators, academics and stakeholders.

By embedding governance within the framework design, the GCCSP ensures that evidence generated can withstand challenge and support confident decision making.

3.10 Summary

The GCCSP monitoring framework is deliberately designed to diagnose pressure, support interpretation and inform action. Its structure reflects the ecological realities of chalk streams, the limitations of traditional survey approaches and the need for proportionate, evidence led restoration.

By integrating spatial coverage, temporal resolution, parameter selection and governance, the framework provides a coherent basis for understanding chalk stream degradation and guiding sustainable recovery.

4. Water quality parameters, units and chalk stream ecological relevance

4.1 Purpose and principles of parameter selection

Water quality parameters monitored under the Greater Cambridge Chalk Stream Project have been selected to reflect the ecological mechanisms that govern chalk stream function and recovery. Chalk streams are groundwater-dominated, naturally oligotrophic systems whose characteristic flora and fauna are adapted to stable, cool, well-oxygenated and low-nutrient conditions. As a result, ecological response occurs at concentrations and levels that are often substantially lower than generic river standards (Wood and Armitage, 1997; Mainstone et al., 2008).

Parameter choice, units and thresholds are therefore aligned with chalk stream ecological sensitivity rather than regulatory convenience. The monitoring programme is designed to resolve subtle but ecologically meaningful departures from natural conditions and to identify pressures that constrain habitat function and restoration success.

Parameters are interpreted collectively, recognising that chalk stream degradation arises from cumulative and interacting pressures rather than isolated exceedances.

4.2 Nutrients: phosphorus and nitrogen

Soluble reactive phosphorus and nitrate nitrogen are recorded in milligrams per litre. These units enable detection of enrichment at concentrations known to drive ecological change in chalk streams.

Chalk streams are naturally low-nutrient systems. Even small increases in phosphorus can promote the growth of fast-growing eutrophic macrophytes and algae, leading to displacement of characteristic chalk stream species such as *Ranunculus* and associated invertebrate assemblages (Mainstone et al., 2008; Holmes et al., 1999). Nutrient enrichment also increases biological oxygen demand, particularly during night-time respiration, contributing to dissolved oxygen instability.

Nitrogen enrichment interacts with phosphorus to reinforce eutrophic conditions and can further exacerbate oxygen stress and plant community change. Together, phosphorus and nitrogen influence macrophyte structure, invertebrate diversity and fish recruitment success.

Indicative chalk stream ecological thresholds used for interpretation are below approximately 0.05 mg L⁻¹ phosphorus and below approximately 5 mg L⁻¹ nitrate nitrogen, recognising that ecological response may occur at lower concentrations depending on site conditions (Mainstone et al., 2008; UKTAG, 2014).

Nutrient data directly inform restoration feasibility. Where nutrient pressure remains elevated relative to chalk stream thresholds, physical habitat enhancement alone is unlikely to deliver sustained ecological benefit.

4.3 Dissolved oxygen

Dissolved oxygen is recorded in milligrams per litre and percent saturation to capture both absolute availability and stability. Chalk stream organisms are adapted to consistently high oxygen availability and are particularly sensitive to short-duration hypoxia rather than prolonged low means.

Fish eggs, fry, brook lamprey ammocoetes and oxygen-sensitive macroinvertebrates are especially vulnerable to night-time oxygen minima. Such events may occur even where daytime concentrations appear acceptable and are often driven by nutrient enrichment, reduced flow or elevated temperature (Wood and Armitage, 1997; Mainstone, 2020).

Continuous dissolved oxygen monitoring provides the most robust evidence of diel oxygen stress in chalk streams, particularly under low-flow, warm-water conditions where nocturnal minima may be ecologically limiting. Within the Greater Cambridge Chalk Stream Project, dissolved oxygen is measured weekly as a calibrated spot parameter and interpreted alongside continuous temperature, nutrient concentrations, sediment condition and biological indices. This tiered approach reflects both practical constraints and a deliberate evidence-trigger framework, whereby weekly measurements are used to identify risk, and continuous dissolved oxygen logging is deployed selectively where ecological risk thresholds are indicated.

Dissolved oxygen data are critical for assessing whether gravel restoration, spawning habitat creation or in-channel works are ecologically viable.

4.4 Water temperature

Water temperature is recorded in degrees Celsius because it directly controls metabolic rate, oxygen solubility and biological demand. Chalk streams are characteristically cool and thermally stable due to groundwater inputs.

Elevated temperatures reduce dissolved oxygen solubility while increasing metabolic demand, narrowing the margin between oxygen supply and demand. This interaction is particularly critical during low-flow periods.

Early life stages of fish and temperature-sensitive macroinvertebrates are especially affected by thermal stress. Sustained temperatures above approximately 20°C, or short-term exceedance above approximately 22°C, are considered ecologically stressful in chalk stream contexts, particularly when combined with nutrient enrichment and reduced flows (Mainstone, 2020).

Temperature data are therefore essential for interpreting dissolved oxygen dynamics and identifying where shading, flow refugia or catchment-scale interventions may be required.

4.5 Electrical conductivity and total dissolved solids

Electrical conductivity and total dissolved solids are recorded in microsiemens per centimetre and milligrams per litre respectively. These parameters provide integrative indicators of ionic composition and water source.

In chalk streams, conductivity is typically dominated by calcium bicarbonate from groundwater and remains relatively stable. Deviations from expected ranges, particularly episodic spikes, can indicate surface-derived inputs associated with urban runoff, wastewater discharge or road salt application (Wharton et al., 2017).

Although conductivity and total dissolved solids do not identify specific contaminants, they are valuable diagnostic tools for identifying pressure pathways and triggering targeted investigation of salts, hydrocarbons or heavy metals where warranted.

4.6 Turbidity and suspended sediment

Turbidity is measured in nephelometric turbidity units as a proxy for suspended sediment concentration. Suspended sediment reduces light penetration, interferes with feeding and respiration, and can clog gills and filtering structures.

In chalk streams, turbidity events are often episodic and associated with rainfall, runoff, bank erosion or in-channel disturbance. Measuring turbidity alongside flow and conductivity allows differentiation between agricultural erosion, urban runoff and internal sediment mobilisation (Lewis, 2003; Bilotta and Brazier, 2008).

Typical chalk stream turbidity is generally low, often below approximately 5–10 NTU. Exceedance indicates elevated sediment pressure and increased ecological risk.

4.7 Deposited fine sediment

Deposited fine sediment is quantified in grams per square metre using established resuspension techniques. This unit provides a direct, quantitative measure of habitat degradation and avoids reliance on subjective visual assessment.

Fine sediment infiltrates gravel beds, reducing permeability and limiting oxygen exchange within the hyporheic zone. This directly affects survival of fish eggs, lamprey ammocoetes and benthic macroinvertebrates and alters nutrient retention and cycling (Sear et al., 1998; Duerdoh et al., 2015).

Increasing deposited sediment mass indicates declining habitat function and reduced likelihood that gravel-based restoration will succeed without prior sediment mitigation.

4.8 Flow context

Flow is considered within the monitoring programme as an essential contextual variable for interpretation of water quality and ecological response, rather than as a primary parameter requiring continuous measurement or hydraulic modelling.

Flow context allows distinction between increased pollutant loading and reduced dilution capacity, which is critical for designing appropriate mitigation responses in groundwater-dominated chalk catchments.

4.8a Flow Context and Interpretation

Flow conditions are recognised as a critical contextual factor influencing water quality, sediment mobilisation and biological response in chalk streams. The monitoring programme therefore incorporates flow context as an interpretive framework rather than as a full hydrometric assessment.

Flow conditions are characterised using a combination of nearby gauged flow records where available, seasonal expectations for chalk streams, and qualitative field observations including water depth, velocity and channel wetted width recorded during weekly visits.

This approach enables differentiation between reduced dilution effects and increased pollutant loading, and supports interpretation of sediment dynamics and biological response, without introducing unnecessary modelling complexity where channel form and bed levels are not being altered.

4.9 Microbiological indicators

Microbiological indicators, including *Escherichia coli*, are recorded in colony forming units per 100 millilitres to identify sewage contamination and associated organic loading.

Elevated microbiological counts indicate wastewater influence, which contributes nutrients, oxygen demand and ecological stress. Patterns linked to rainfall or infrastructure performance support identification of misconnections or sewage inputs requiring targeted investigation.

4.10 Integration with biological response

Each water quality parameter is interpreted alongside biological response assessed through macroinvertebrate and macrophyte indices. Chemical and physical data provide mechanistic explanation for observed biological condition, while biological communities integrate pressure over time.

This integration ensures that monitoring outputs are ecologically meaningful and directly relevant to chalk stream restoration outcomes.

4.11 Restoration sequencing and feasibility

Water quality data are used to assess whether conditions are suitable for physical restoration and to sequence intervention appropriately. Where water quality constraints are identified, mitigation is prioritised before habitat enhancement. Where conditions fall within chalk stream tolerances, restoration can proceed with greater confidence of ecological response.

4.12 Summary of units and indicative chalk stream thresholds

For clarity and transparency, the table below summarises the units used and indicative chalk stream ecological thresholds applied during interpretation. These thresholds are used to guide assessment of risk and restoration feasibility rather than as absolute compliance criteria.

Parameter	Unit	Indicative chalk stream threshold
Phosphorus	$\text{mg L}^{-1} \text{ P}$	<0.05
Nitrate nitrogen	$\text{mg L}^{-1} \text{ N}$	<1
Dissolved oxygen	mg L^{-1} and %	>8 mg L^{-1} and >80%
Temperature	°C	<20 sustained
Turbidity	NTU	<5–10
Conductivity	$\mu\text{S cm}^{-1}$	Stable groundwater range
Deposited sediment	g m^{-2}	Increasing trend indicates risk
<i>E. coli</i>	cfu 100 mL^{-1}	Low background expected

Indicative thresholds presented in this table reflect chalk stream ecological sensitivity rather than generic river standards. For nitrate nitrogen, a precautionary benchmark of approximately 1 $\text{mg L}^{-1} \text{ N}$ is applied to reflect evidence that ecological response in chalk streams may occur well below broader regulatory screening values. Thresholds are used to guide risk assessment and restoration feasibility rather than as absolute compliance criteria.

4.13 Chalk stream flora and fauna most sensitive to water quality pressure

The monitoring parameters selected directly reflect the requirements of chalk stream species that are particularly sensitive to nutrient enrichment, oxygen instability, sediment accumulation and thermal stress. These include *Ranunculus* spp. and other oligotrophic macrophytes, brown trout eggs and fry, brook lamprey ammocoetes and oxygen-sensitive *Ephemeroptera*, *Plecoptera* and *Trichoptera* taxa.

4.14 Role of thresholds in evidence-led restoration

Ecological thresholds provide a framework for interpreting risk and guiding restoration decisions. Persistent proximity to or exceedance of chalk stream thresholds indicates reduced likelihood of restoration success unless underlying water quality pressures are addressed.

By explicitly defining parameters, units and thresholds, the monitoring framework ensures that restoration planning is evidence-led, proportionate and defensible.

5. Monitoring methods and field protocols

This section sets out the monitoring methods used under the Greater Cambridge Chalk Stream Project and explains how data are collected in a structured, repeatable and defensible manner. Methods have been selected to resolve pressures relevant to chalk stream ecology, to operate within available resources, and to ensure that data generated are suitable for interpretation, comparison and long-term use.

Monitoring combines weekly citizen science sampling, continuous temperature and total dissolved solids logging, seasonal biological surveys and targeted physical and sediment assessment. No single method is relied upon in isolation. Instead, methods are designed to complement one another and to support triangulation of evidence.

5.1 Overview of monitoring framework

The GCCSP monitoring framework is designed to capture pressures operating at different temporal and spatial scales. Chronic pressures such as nutrient enrichment and sediment retention are assessed through sustained weekly monitoring and repeat sediment surveys. Episodic pressures, including thermal stress and ionic spike events, are captured through continuous logging. Biological response is assessed seasonally to integrate cumulative exposure over time.

This tiered approach ensures that monitoring effort is proportionate, ecologically relevant and aligned with the processes being investigated.

5.2 Weekly water quality monitoring

Weekly monitoring forms the core of the GCCSP evidence base and is undertaken by trained citizen scientists following standardised protocols. Weekly on site field measurements include dissolved oxygen, electrical conductivity, pH, turbidity, temperature and flow context observations.

In addition, water samples are collected weekly for laboratory-based analysis of phosphate phosphorus, nitrate nitrogen, ammonia and *E. coli*. These parameters are analysed within a controlled laboratory environment using validated methods. Volunteers are responsible for water sample collection only and do not undertake laboratory testing or handle chemical reagents.

Weekly sampling provides continuity, supports trend analysis and allows chronic pressures to be identified. Sampling frequency is sufficient to characterise seasonal variation while remaining sustainable for volunteers and project staff.

5.3 Field measurement and laboratory analysis

Field measurements are undertaken on site using calibrated meters and standard procedures to ensure consistency across sites and over time. Parameters measured in the field include dissolved oxygen, electrical conductivity, pH, turbidity and temperature, which can be measured safely and reliably by trained volunteers without the use of hazardous reagents.

Parameters requiring chemical reagents or microbiological handling, including phosphate phosphorus, nitrate nitrogen, ammonia and *E. coli*, are analysed exclusively within laboratory facilities using validated methods.

This separation of field measurement and laboratory analysis ensures data quality, protects volunteer safety, reduces liability risk and ensures compliance with health and safety and waste disposal requirements.

For consistency with chalk stream literature, ecological thresholds and regulatory assessment, nutrient concentrations are reported using elemental units. Phosphorus is reported as phosphate phosphorus ($\text{mg L}^{-1} \text{ P}$) and nitrate is reported as nitrate nitrogen ($\text{mg L}^{-1} \text{ N}$).

Results are not reported as compound concentrations (for example PO_4 or NO_3), as this can lead to misinterpretation when comparing data with ecological benchmarks and published evidence. Reporting in elemental units ensures compatibility with established chalk stream thresholds and facilitates robust interpretation.

5.4 Spatial structure of weekly monitoring

Weekly water quality monitoring under the Greater Cambridge Chalk Stream Project is undertaken using paired upstream and downstream sampling locations at each case study reach. Sampling points are selected to bracket the focal section of stream so that conditions entering and leaving the monitored reach are captured consistently.

This upstream–downstream design allows localised influences within each case study reach to be distinguished from wider catchment background conditions. Differences observed between paired sampling points provide evidence of in-reach pressure, attenuation or recovery, while similar values indicate dominance of upstream signal.

Paired sampling strengthens interpretation of weekly data, reduces the risk of misattributing upstream pressures to local causes and supports more confident identification of site-specific issues requiring further investigation or management action.

5.5 Continuous temperature and total dissolved solids monitoring

Continuous monitoring is undertaken using automated loggers recording water temperature and total dissolved solids at **15-minute intervals**, providing sufficient temporal resolution to capture diurnal cycling, short-duration events and seasonal trends that cannot be resolved through weekly sampling alone.

Continuous temperature data capture diurnal cycling, short-duration thermal stress events and prolonged warming during low-flow periods. Continuous total dissolved solids data provide an indicator of ionic loading and dilution capacity and are used to identify episodic inputs associated with rainfall, runoff or infrastructure influence.

Continuous monitoring complements weekly sampling by providing temporal context and by identifying events that would otherwise remain undetected.

5.6 Sediment monitoring

Sediment monitoring addresses one of the most significant pressures affecting chalk streams and is undertaken using quantitative methods rather than visual assessment alone.

Deposited fine sediment is quantified using established resuspension techniques that provide mass per unit area. Sampling is undertaken at representative erosional and depositional patches within each reach to capture spatial variability. Repeat surveys allow trends in sediment retention to be identified over time.

Suspended sediment is assessed using turbidity as a proxy and through targeted sampling during high-flow or rainfall events where appropriate. These data support interpretation of sediment delivery pathways and timing.

5.7 Bank erosion assessment

Bank erosion is assessed using erosion pins installed at representative locations within each reach. This method provides quantitative data on rates of bank retreat and supports identification of sediment sources internal to the channel.

Erosion data are interpreted alongside suspended and deposited sediment measurements to strengthen attribution of sediment pressure.

5.8 Fixed point photography

Fixed point photography is used to document seasonal and interannual changes in channel form, bank condition, macrophyte cover and sediment exposure. Photographs are taken from permanently marked locations and orientations to ensure repeatability.

Photographic records provide contextual evidence that supports interpretation of quantitative data but are not used as a primary diagnostic tool.

5.9 Biological monitoring

Biological response is assessed through seasonal WHTP macroinvertebrate surveys and Mean Trophic Rank macrophyte surveys. These methods are selected because they are sensitive to nutrient

enrichment, oxygen instability and fine sediment pressure, which are key drivers of chalk stream ecological condition.

Biological surveys integrate cumulative exposure over time and are interpreted alongside chemical and physical data to strengthen causal understanding.

5.10 Quality assurance and consistency

Quality assurance procedures are applied across all monitoring activities. Field meters are calibrated routinely, laboratory methods follow validated protocols and data are reviewed for consistency and plausibility.

Spatial consistency between upstream and downstream sampling points is reviewed as part of routine data checks to identify anomalous results or potential sampling error.

Unit consistency and reporting format are checked as part of routine data quality assurance to ensure all nutrient results are expressed as phosphate phosphorus ($\text{mg L}^{-1} \text{ P}$) and nitrate nitrogen ($\text{mg L}^{-1} \text{ N}$).

5.11 Health and safety considerations

All monitoring activities are undertaken in accordance with project risk assessments and health and safety guidance. Laboratory analysis is conducted within facilities equipped for safe reagent handling, microbiological analysis and compliant hazardous waste disposal, ensuring appropriate insurance, liability cover and risk management.

5.12 Adaptive monitoring

The monitoring framework is adaptive by design. Where evidence indicates elevated risk or unresolved uncertainty, additional targeted monitoring or specialist analysis may be deployed. Conversely, where conditions demonstrate stability, monitoring intensity may be reviewed to ensure resources remain proportionate.

5.13 Monitoring frequency, temporal coverage and diagnostic purpose

The GCCSP applies a tiered temporal framework in which parameters are monitored continuously, weekly, seasonally or on an event-led basis depending on their ecological behaviour and diagnostic value. This ensures that monitoring effort is aligned with process and pressure.

5.14 Monitoring frequency, parameters and diagnostic purpose table

Monitoring frequency	Parameters and activities	Primary diagnostic purpose
Continuous (15-minute logging)	Water temperature, total dissolved solids	Detect short-duration thermal stress and ionic spike events, provide temporal context for weekly sampling

Weekly	Dissolved oxygen (spot), electrical conductivity (spot), pH, turbidity, temperature (spot), flow context, water sample collection for laboratory analysis of phosphate phosphorus, nitrate nitrogen, ammonia and <i>E. coli</i>	Track sustained water quality conditions, seasonal trends and chronic pressure
Seasonal	WHTP macroinvertebrate surveys, MTR macrophyte surveys	Integrate cumulative pressure over time and validate chemical and physical signals
Seasonal and repeat	Deposited fine sediment sampling using resuspension techniques	Quantify habitat degradation, sediment retention and trends over time
Event-led and periodic	Suspended sediment assessment during high flow or rainfall events	Identify sediment mobilisation pathways and source timing
Periodic (repeat measures)	Bank erosion pins	Quantify rates of bank retreat and sediment supply
Seasonal and repeat	Fixed point photography	Document seasonal and interannual habitat change to support interpretation
Targeted and specialist	Sediment composition analysis, heavy metals, hydrocarbons, salts, invasive species surveys	Deployed where core monitoring indicates elevated or unresolved pressure

Nutrient concentrations are reported in elemental units as phosphate phosphorus ($\text{mg L}^{-1} \text{ P}$) and nitrate nitrogen ($\text{mg L}^{-1} \text{ N}$) to ensure comparability with chalk stream ecological thresholds.

5.15 Relationship to adaptive monitoring

The frequencies set out above represent the baseline monitoring framework. Where evidence indicates elevated risk or unresolved uncertainty, the programme allows for adaptive adjustment. This may include increased sampling frequency, deployment of additional loggers or targeted specialist analysis.

Conversely, where evidence demonstrates stability or low ecological risk, monitoring intensity can be reviewed to ensure resources remain proportionate while maintaining diagnostic confidence.

5.16 Quality Assurance and Methodological Controls

All field and laboratory measurements within the monitoring programme follow defined quality assurance procedures designed to ensure data reliability, comparability and scientific defensibility.

Field meters are calibrated in accordance with manufacturer specifications using traceable standards, with calibration checks undertaken routinely and documented. Spot measurements are conducted consistently at comparable locations and flow conditions where practicable.

Laboratory analyses for nutrients and microbiological parameters are undertaken using standard methods with defined detection limits, appropriate sample preservation, holding times and chain-of-custody procedures. Duplicate samples, blanks and internal laboratory quality controls are used to verify analytical performance.

Sediment resuspension sampling follows a repeatable standard operating procedure with consistent disturbance area, replication and site selection criteria to minimise operator bias.

Data are reviewed for plausibility, outliers and internal consistency prior to interpretation, and are assessed within their hydrological and seasonal context rather than as isolated values.

6. Citizen science, training and data credibility

6.1 Role of citizen science within the monitoring framework

Citizen science plays a central but carefully defined role within the Greater Cambridge Chalk Stream Project monitoring framework. Volunteers contribute to routine data collection under structured protocols, enabling spatial and temporal coverage that would be unattainable through professional monitoring alone. However, citizen science is not used as a substitute for professional oversight, laboratory analysis or specialist interpretation.

Instead, volunteer monitoring is embedded within a governance framework designed to ensure that data generated are credible, comparable and fit for purpose in chalk stream decision making. This approach recognises both the value of community involvement and the limitations of unsupervised or inadequately supported citizen science.

6.2 Avoiding the limitations of low-quality citizen science

The GCCSP explicitly avoids the pitfalls commonly associated with volunteer-led monitoring, including inconsistent methods, insufficient training, poor quality assurance and inappropriate interpretation. These limitations have historically undermined confidence in some citizen science datasets and reduced their utility in regulatory and academic contexts.

To address this, the project adopts a constrained and evidence-led model in which volunteers collect a defined subset of parameters using approved methods, while analytical responsibility, quality assurance and interpretation remain with trained professionals. This ensures that volunteer effort contributes meaningfully to evidence generation without compromising data integrity.

6.3 Training and competency development

All volunteers participating in weekly monitoring receive structured training covering sampling techniques, equipment handling, health and safety, data recording and biosecurity. Training is delivered by experienced practitioners and reinforced through written protocols and on-site supervision.

Competency is developed progressively. Volunteers are initially supported closely, with increased autonomy introduced only where consistent procedural competence is demonstrated. This staged approach reduces error, builds confidence and ensures that data quality improves over time rather than degrading as participation expands.

6.4 Standardised protocols and repeatability

Citizen scientists operate under standardised protocols that specify sampling locations, timing, equipment use and data recording procedures. Fixed sampling points and consistent methods ensure repeatability across sites and seasons.

Protocols are designed to minimise subjective judgement and to constrain variation between individuals. Where subjective assessment cannot be avoided, such data are used only as contextual information and are not relied upon for quantitative interpretation.

6.5 Equipment selection and limitations

Volunteers use approved field equipment selected for robustness, ease of use and suitability for chalk stream conditions. Equipment is chosen to minimise operator error while still providing data of sufficient resolution to support interpretation when combined with professional oversight.

Parameters requiring higher analytical precision or involving chemical reagents are not undertaken independently by volunteers. Instead, water samples are collected following strict protocols and transferred to laboratory facilities for analysis.

This division of responsibility ensures safety and analytical reliability while allowing volunteers to contribute effectively.

6.6 Quality assurance and oversight

Quality assurance is embedded throughout the citizen science programme. This includes routine calibration of equipment, duplicate sampling where appropriate and regular review of data by project staff.

Data submitted by volunteers are checked for completeness, consistency and plausibility before being incorporated into the project database. Anomalies trigger follow-up investigation rather than automatic acceptance or rejection.

This oversight ensures that volunteer-generated data meet the same standards of scrutiny applied to professionally collected datasets.

6.7 Integration with professional and academic expertise

Citizen science monitoring under the GCCSP operates within a wider framework of professional and academic collaboration. Data collection is guided by experienced water quality practitioners and reviewed in collaboration with specialists in geomorphology, ecology and hydrology.

This integration ensures that volunteer effort is aligned with project objectives and that data generated contribute directly to evidence-led decision making rather than existing in isolation.

6.8 Value of citizen science for chalk stream restoration

When properly structured and supported, citizen science offers significant benefits for chalk stream monitoring. It enables high-frequency sampling, enhances spatial coverage and builds community understanding of river processes and pressures.

Crucially, the GCCSP approach ensures that volunteer time is not wasted. Data collected contribute directly to identifying pressures, informing mitigation and guiding restoration sequencing. Volunteers are therefore participants in evidence generation rather than passive observers.

6.9 Transparency and trust

By combining citizen science with professional oversight, laboratory analysis and transparent reporting, the GCCSP monitoring programme builds trust among stakeholders, regulators and the scientific community.

The programme demonstrates that citizen science, when properly governed, can produce data that are credible, defensible and valuable for managing sensitive systems such as chalk streams.

7. Sediment dynamics, erosion and physical habitat condition

7.1 Rationale for sediment monitoring in chalk streams

Fine sediment is one of the most significant yet persistently underestimated pressures affecting chalk streams. In groundwater-dominated systems characterised by clean, permeable gravels and stable flow, even modest increases in fine sediment delivery or retention can severely constrain ecological function.

Sediment pressure in chalk streams acts through multiple mechanisms. Suspended sediment reduces water clarity and light penetration, affecting macrophyte growth and invertebrate feeding. Deposited fine sediment infiltrates gravel substrates, reducing permeability and limiting oxygen exchange within the hyporheic zone. This directly affects fish egg survival, lamprey ammocoetes, benthic macroinvertebrates and nutrient cycling processes.

Because sediment pressure is cumulative and often episodic, it cannot be reliably diagnosed through visual inspection or occasional sampling. Quantitative, repeatable measurement is therefore essential.

7.2 Distinction between suspended and deposited sediment

The GCCSP monitoring framework explicitly distinguishes between suspended sediment and deposited fine sediment, recognising that these represent different processes, pressures and management responses.

Suspended sediment reflects sediment delivery and mobilisation within the catchment and channel, often associated with rainfall events, runoff pathways, bank erosion or in-channel disturbance. Deposited fine sediment reflects sediment retention within the channel and its interaction with habitat structure and flow conditions.

Both components are monitored because a reduction in suspended sediment does not necessarily translate into improved substrate condition, and vice versa.

7.3 Suspended sediment and turbidity monitoring

Suspended sediment is assessed using turbidity as a proxy, measured in nephelometric turbidity units. Turbidity provides a rapid, repeatable indicator of fine sediment in the water column and is particularly useful for identifying episodic sediment inputs.

In chalk streams, baseline turbidity is typically low. Short-duration spikes often indicate sediment mobilisation linked to rainfall, runoff or disturbance. By measuring turbidity alongside conductivity, flow context and rainfall patterns, it is possible to infer likely sediment sources, including agricultural runoff, urban drainage or channel erosion.

Turbidity data are interpreted as part of an integrated framework rather than as a standalone metric and are used to trigger further investigation where sustained or repeated elevations are observed.

7.4 Deposited fine sediment quantification

Deposited fine sediment is quantified using established resuspension techniques that provide mass per unit area, expressed as grams per square metre. This approach avoids subjective visual assessment and allows direct comparison between sites and over time.

Sampling is undertaken at representative erosional and depositional patches within each reach, reflecting spatial variability in sediment retention. Repeat sampling allows identification of trends in fine sediment accumulation or removal, which is critical for assessing whether habitat condition is improving or deteriorating.

Deposited sediment data provide direct evidence of substrate functionality. Increasing fine sediment mass indicates declining gravel permeability, reduced hyporheic oxygen exchange and reduced suitability for spawning and benthic fauna.

7.5 Sediment volume, retention and trend

Sediment pressure in chalk streams is not defined solely by snapshot measurements but by the volume of fine sediment retained within the channel and its persistence through time. The GCCSP monitoring framework therefore places emphasis on trend analysis and sediment retention rather than absolute values alone.

By combining deposited sediment measurements with repeat surveys, turbidity data and flow context, the programme assesses whether sediment is being exported from the system or retained and accumulating. This distinction is critical for understanding whether restoration substrates are likely to remain functional.

7.6 Bank erosion and sediment supply

Bank erosion represents a significant internal sediment source in many chalk streams, particularly where historic modification, livestock access, invasive species or flow concentration have destabilised banks.

Erosion is quantified using erosion pins installed at representative locations. This method provides measurable rates of bank retreat and allows erosion-derived sediment inputs to be directly correlated with suspended sediment, turbidity and deposited fine sediment measurements.

Quantifying erosion rates supports identification of dominant sediment sources and informs prioritisation of bank stabilisation or riparian management measures where appropriate.

7.7 Fixed point photography and habitat context

Fixed point photography is used to document seasonal and interannual changes in channel form, bank condition, macrophyte cover and sediment exposure. Photographs are taken from permanently marked locations and orientations to ensure repeatability.

Fixed point photography is not used as a primary diagnostic tool. Instead, it provides contextual evidence that supports interpretation of quantitative sediment, water quality and biological data. This approach avoids reliance on subjective observation while retaining a visual record of habitat change.

7.8 Sediment composition and specialist analysis

Where monitoring evidence indicates significant sediment pressure or uncertainty regarding sediment origin, targeted analysis of sediment composition is undertaken. This may include particle size distribution, organic content and chemical characterisation where contamination is suspected.

Such analyses are deployed selectively and proportionately, informed by initial monitoring rather than undertaken routinely. This ensures efficient use of resources while allowing robust diagnosis where required.

7.9 Relationship between sediment dynamics and restoration success

Sediment monitoring is central to restoration decision making under the GCCSP. Clean, permeable gravels are a prerequisite for successful chalk stream habitat restoration. Where fine sediment pressure remains high, gravel augmentation or in-channel works are unlikely to deliver sustained benefit and may exacerbate sediment retention.

By quantifying sediment dynamics and identifying sources, the monitoring framework allows sediment mitigation to be prioritised and restoration to be sequenced appropriately.

7.10 Avoiding reliance on walkover assessment

The GCCSP deliberately avoids reliance on walkover survey alone for diagnosing sediment pressure. While walkover surveys provide useful contextual information, they cannot quantify sediment volume, retention or temporal change and are therefore insufficient for evidence-led decision making in chalk streams.

Quantitative sediment monitoring provides the evidential basis required to justify intervention, assess effectiveness and withstand scrutiny.

8. Biological indicators and integration with water quality and sediment evidence

8.1 Purpose of biological monitoring within the GCCSP framework

Biological monitoring within the Greater Cambridge Chalk Stream Project is used as an integrative line of evidence rather than as a standalone diagnostic tool. Chalk stream biological communities respond to cumulative and interacting pressures over time, making them powerful indicators of ecological condition but limited in their ability to identify causation in isolation.

The GCCSP framework therefore uses biological data to validate, contextualise and test interpretations derived from water quality, sediment and hydrological monitoring. This approach avoids the common pitfall of relying on biological indices alone to infer pressure or prescribe restoration, which can result in misdiagnosis and ineffective intervention.

8.2 Selection of biological indices

The biological tools selected for the GCCSP are the Whalley, Hawkes, Paisley and Trigg macroinvertebrate index and the Mean Trophic Rank macrophyte assessment. These methods are chosen because they are demonstrably sensitive to the specific pressures affecting chalk streams, particularly nutrient enrichment, dissolved oxygen instability and fine sediment accumulation.

Both indices have a strong empirical basis, are widely used in chalk stream assessment and provide outputs that can be directly related to water quality drivers rather than broad habitat condition alone.

8.3 Whalley, Hawkes, Paisley and Trigg macroinvertebrate index

The WHTP index assesses macroinvertebrate community composition with particular sensitivity to water quality stressors. Many chalk stream macroinvertebrates, including Ephemeroptera, Plecoptera and Trichoptera taxa, exhibit narrow tolerance ranges for dissolved oxygen, fine sediment and organic enrichment.

Changes in WHTP scores reflect cumulative exposure to these pressures and provide evidence of chronic stress that may not be captured by snapshot chemical sampling. Macroinvertebrates integrate conditions over weeks to months, making them valuable indicators of sustained or repeated pressure.

WHTP outputs are interpreted alongside dissolved oxygen, nutrient and sediment data to test whether observed biological condition is consistent with identified physico-chemical constraints.

8.4 Mean Trophic Rank macrophyte assessment

The Mean Trophic Rank assessment evaluates macrophyte community composition in relation to nutrient availability. Chalk stream plant communities are particularly sensitive to phosphorus enrichment, with characteristic oligotrophic species replaced by eutrophic taxa as nutrient concentrations increase.

MTR provides a direct link between nutrient conditions and biological response and is therefore central to interpreting phosphorus data. Declining MTR scores indicate nutrient driven community change and reduced habitat suitability for chalk stream fauna reliant on clean gravels and structured flow.

MTR outputs are used to assess whether nutrient mitigation is required before or alongside physical habitat restoration.

8.5 Justification for not prioritising Riverfly and eDNA indices

The GCCSP has reviewed Riverfly and environmental DNA approaches and does not prioritise them as core monitoring tools within this programme.

Riverfly indices are primarily designed as rapid indicators of gross pollution events and may lack sensitivity to chronic, low-level pressures such as fine sediment accumulation, nutrient enrichment and oxygen instability that dominate chalk stream degradation. While valuable for incident detection, Riverfly data alone do not provide sufficient resolution to diagnose pressure mechanisms in chalk streams.

Environmental DNA techniques offer powerful tools for species detection but provide limited information on abundance, life stage viability or habitat quality. eDNA does not resolve physiological stress, recruitment success or functional habitat condition and therefore cannot substitute for water quality or sediment diagnostics.

By selecting WHTP and MTR, the GCCSP prioritises biological tools that are mechanistically linked to water quality pressures and restoration outcomes.

8.6 Integration with water quality and sediment data

Biological indices are interpreted within a triangulated framework that integrates chemical, physical and biological evidence. No biological result is interpreted in isolation.

Where biological condition aligns with water quality and sediment signals, confidence in diagnosis is increased. Where biological response appears inconsistent, this is treated as evidence requiring further investigation rather than dismissed or overinterpreted.

This integrated approach reduces uncertainty and strengthens causal inference.

8.7 Temporal considerations and repeat surveys

Biological surveys are undertaken at intervals appropriate to capture seasonal variation while avoiding excessive disturbance. Repeat surveys allow assessment of trends and response to mitigation or restoration.

Biological monitoring is not used to detect short duration events but to assess longer-term ecological response, complementing high-resolution water quality monitoring.

8.8 Role in restoration sequencing and evaluation

Biological data inform restoration sequencing by indicating whether water quality conditions are suitable for ecological recovery. Where biological indices indicate stress consistent with water quality

pressure, mitigation is prioritised. Where biological condition improves following mitigation, confidence in restoration effectiveness is increased.

Post-restoration biological monitoring is used to evaluate ecological response and guide adaptive management.

8.9 Summary

The GCCSP biological monitoring programme is deliberately selective, mechanism-focused and integrated. By choosing indices sensitive to chalk stream pressures and interpreting them alongside water quality and sediment data, the programme avoids the limitations of both purely chemical and purely biological assessment.

This approach ensures that biological monitoring strengthens, rather than weakens, the evidence base for chalk stream restoration.

9. Continuous monitoring of temperature and total dissolved solids

9.1 Purpose of continuous monitoring

Continuous monitoring under the Greater Cambridge Chalk Stream Project focuses specifically on water temperature and total dissolved solids, recorded at **15-minute intervals** using fixed loggers. This temporal resolution is sufficient to resolve diurnal variability, nocturnal minima, short-duration thermal stress events and episodic ionic inputs that are ecologically relevant in chalk stream systems but are not captured by weekly sampling.

The purpose of continuous monitoring is not to replace weekly monitoring, but to provide temporal context that strengthens interpretation of weekly water quality data and helps identify short-duration stress events relevant to chalk stream ecology.

9.2 Relationship between spot measurements and continuous data

Water temperature is measured both as a weekly spot parameter and through continuous logging. Weekly spot measurements provide consistency with other field parameters and support comparison across sites and seasons. Continuous temperature data capture diurnal cycling, nocturnal minima, daytime maxima and short-duration thermal stress events that may be missed by weekly sampling.

Together, spot and continuous temperature measurements provide a more complete understanding of thermal regime and thermal pressure.

Total dissolved solids are recorded continuously and are not measured as part of weekly spot sampling. Continuous TDS data provide an integrated signal of ionic loading, dilution capacity and episodic inputs.

9.3 Diagnostic value of temperature data

Temperature is a critical driver of chalk stream ecological condition. Elevated temperatures reduce dissolved oxygen solubility, increase metabolic demand and can impose direct physiological stress on sensitive life stages of fish and invertebrates.

Continuous temperature data allow identification of prolonged warming during low-flow periods, rapid temperature increases associated with runoff or effluent influence and exceedance of ecologically relevant thresholds. These data are interpreted alongside dissolved oxygen measurements and biological survey results to assess potential ecological impact.

9.4 Diagnostic value of total dissolved solids

Total dissolved solids provide an indicator of overall ionic concentration within the water column. In chalk streams, baseline TDS values are typically stable and reflect groundwater dominance. Short-term increases in TDS can indicate runoff inputs, infrastructure influence or reduced dilution capacity during low flows.

Continuous TDS monitoring allows detection of episodic events and supports attribution when interpreted alongside rainfall, flow context and weekly electrical conductivity measurements.

TDS data are not interpreted as direct measures of specific pollutants but as indicators that may trigger further investigation where persistent or unexplained deviations occur.

9.5 Budgetary and methodological considerations

The GCCSP selected continuous temperature and TDS logging as a cost-effective means of enhancing temporal resolution within a constrained budget. More complex continuous monitoring systems were considered but could not be deployed without reducing core citizen science activity.

The chosen approach maximises diagnostic value while maintaining proportionality and sustainability.

9.6 Integration with wider monitoring framework

Continuous temperature and TDS data are integrated with weekly water quality monitoring, sediment assessment and biological surveys. Continuous data are used to identify periods or events of interest, inform interpretation of weekly results and guide targeted follow-up monitoring where appropriate.

10. Contribution to catchment partnerships and evidence-based catchment planning

10.1 Purpose and relevance at catchment scale

The Greater Cambridge Chalk Stream Project monitoring programme is designed to deliver value beyond individual sites by generating transferable, high-resolution evidence that informs catchment-scale understanding and decision making. The case study reaches function as diagnostic reference sites

within a shared chalk geology and groundwater-dominated hydrological setting, enabling pressures to be identified, compared and interpreted across land-use gradients.

This approach addresses a common limitation in catchment partnerships, where strategic plans are often developed using sparse datasets, walkover observations or infrequent regulatory monitoring that cannot resolve ecological mechanisms or sequence interventions effectively.

10.2 Filling critical evidence gaps in catchment planning

Catchment partnerships routinely face uncertainty when prioritising actions because available data often describe condition without diagnosing cause. The GCCSP monitoring framework fills this gap by providing:

- multi-parameter water quality data at chalk-stream-relevant thresholds
- quantified sediment dynamics, including suspended and deposited components
- integration of chemical, physical and biological evidence
- temporal resolution sufficient to identify episodic stress and cumulative pressure

These data allow catchment partnerships to move from descriptive assessments to mechanistic understanding, reducing reliance on assumption when identifying dominant pressures.

10.3 Informing prioritisation and sequencing of interventions

A central challenge in catchment management is determining where intervention will be most effective and in what order actions should occur. GCCSP evidence supports this by distinguishing between sites limited primarily by water quality, sediment retention, hydrological constraint or habitat simplification.

For example, identifying nutrient-driven trophic imbalance versus sediment-driven habitat dysfunction has direct implications for whether investment should prioritise pollution mitigation, land-management change or physical restoration. By resolving these distinctions, GCCSP data support more targeted, proportionate and defensible intervention planning.

10.4 Urban–rural contrasts and attribution

By monitoring rural headwaters, urban reaches and springhead systems within the same catchment context, the GCCSP enables attribution of pressures across land-use types. Differences in temperature stability, ionic signatures, nutrient behaviour and sediment dynamics provide insight into how urbanisation, infrastructure and land management interact with chalk stream processes.

This comparative approach strengthens confidence in attribution and helps partnerships avoid misdirected interventions based on incomplete evidence.

10.5 Transferability and upscaling of findings

Although GCCSP focuses on defined case study sites, the evidence generated is transferable across the wider chalk stream network where geological and hydrological conditions are comparable. Patterns observed consistently across sites can inform expectations elsewhere in the catchment, while divergence highlights the need for local nuance within strategic plans.

Importantly, this transferability is evidence-led rather than assumed, reducing the risk of inappropriate generalisation.

10.6 Supporting regulatory engagement and funding decisions

Robust, high-resolution datasets strengthen the ability of catchment partnerships to engage constructively with regulators, infrastructure providers and funders. GCCSP evidence can be used to demonstrate need, justify investment, support business cases and evaluate outcomes transparently.

This is particularly important where public funds are involved or where actions must be coordinated across multiple organisations and landowners.

10.7 Complementarity with catchment partnership objectives

The GCCSP monitoring programme does not seek to replace catchment partnerships or strategic planning processes. Instead, it provides the detailed, site-specific evidence that such partnerships often require to function effectively.

By grounding catchment planning in measured data rather than assumption, the project supports the development of truly evidence-based catchment plans that reflect ecological reality and prioritise interventions with the greatest likelihood of success.

10.8 Summary

GCCSP case study monitoring provides a robust evidential foundation for catchment-scale understanding and decision making. By resolving mechanisms, quantifying pressures and integrating multiple lines of evidence, the project strengthens the capacity of catchment partnerships to plan, prioritise and deliver effective chalk stream restoration.

11. Data interpretation, thresholds and evidence integration

11.1 Principles of interpretation

Data generated under the GCCSP are interpreted using a weight-of-evidence approach. No single parameter or dataset is used in isolation. Interpretation considers temporal trends, spatial patterns, consistency across parameters and biological response.

This approach reflects the complex, cumulative nature of pressures acting on chalk streams and avoids simplistic attribution.

All nutrient data used for interpretation under the GCCSP are expressed in elemental units, with phosphorus reported as phosphate phosphorus ($\text{mg L}^{-1} \text{ P}$) and nitrate reported as nitrate nitrogen ($\text{mg L}^{-1} \text{ N}$). Ecological thresholds and benchmarks referenced in this document are defined using the same units, ensuring direct comparability and avoiding conversion error.

Trend interpretation is based on repeated temporal patterns and expert judgement rather than formal hypothesis testing, unless datasets become sufficiently long for statistical analysis

11.2 Interpretation of weekly water quality data

Weekly water quality data are used to characterise sustained conditions and seasonal trends. Spot measurements of dissolved oxygen, electrical conductivity, pH, turbidity and temperature provide insight into baseline conditions and variability.

Laboratory-based measurements of phosphate phosphorus, nitrate nitrogen, ammonia and *E. coli* provide higher-precision data suitable for assessing nutrient enrichment, organic loading and microbiological risk.

Weekly data are interpreted with reference to chalk stream relevant ecological thresholds and in the context of upstream and downstream paired sampling to distinguish local influences from catchment background signal.

11.3 Interpretation of continuous temperature and TDS data

Continuous temperature and TDS data provide temporal resolution that supports interpretation of weekly monitoring results. Continuous temperature data are used to identify diurnal patterns, prolonged warming during low-flow periods and short-duration thermal stress events.

Continuous TDS data are used to identify episodic ionic spikes and shifts in dilution capacity. These signals are interpreted alongside rainfall, flow context and weekly electrical conductivity measurements.

Continuous data do not provide definitive attribution of pollution source but support identification of periods or locations requiring further investigation.

11.4 Interpretation of sediment data

Sediment data are interpreted in terms of both delivery and retention. Turbidity provides an indicator of suspended sediment presence and timing, while deposited fine sediment measurements quantify habitat constraint within the channel.

Sediment data are interpreted alongside bank erosion measurements, fixed point photography and biological survey results to assess ecological relevance and restoration feasibility.

11.5 Integration with biological evidence

Biological surveys provide an integrated response to cumulative water quality, sediment and hydrological pressures. WHTP macroinvertebrate data and Mean Trophic Rank macrophyte surveys are interpreted in conjunction with chemical and physical evidence to strengthen causal understanding.

Biological results are not used to infer specific pollutant concentrations but to assess whether observed water quality conditions are ecologically consequential.

11.6 Use of thresholds and benchmarks

Ecological thresholds used within the GCCSP are derived from peer-reviewed literature and are applied as indicative benchmarks rather than regulatory limits. Thresholds are used to flag potential risk and guide prioritisation rather than to assert compliance or non-compliance.

Exceedance of a threshold triggers further scrutiny and triangulation rather than definitive conclusions.

11.6a Nutrient reporting conventions and ecological relevance.

For chalk stream systems, the form in which nutrients are reported is critical to ecological interpretation. Under the GCCSP, phosphorus concentrations are reported as phosphate phosphorus ($\text{mg L}^{-1} \text{ P}$) and nitrate concentrations are reported as nitrate nitrogen ($\text{mg L}^{-1} \text{ N}$).

These reporting conventions are used because published ecological thresholds, biological response relationships and regulatory benchmarks for chalk streams are defined using elemental units. Reporting nutrients in compound form, such as PO_4 or NO_3 , can lead to misinterpretation, false comparison with threshold values and apparent inflation of concentrations due solely to molecular weight differences rather than true ecological loading.

Consistent use of elemental units ensures that GCCSP data are directly comparable with peer-reviewed chalk stream literature, regulatory assessment frameworks and long-term datasets. This clarity is essential for robust interpretation and avoids ambiguity in the communication of nutrient pressures.

11.7 Triggering further investigation

Where monitoring data indicate persistent or unexplained anomalies, the GCCSP may deploy targeted specialist investigation. This may include analysis for hydrocarbons, heavy metals, salts or other contaminants, infrastructure review or enhanced event-based sampling.

Such investigations are evidence led and proportionate, guided by core monitoring results.

11.8 Communicating uncertainty

Uncertainty is explicitly acknowledged in interpretation and reporting. Limitations related to sampling frequency, spatial coverage and analytical scope are documented to ensure transparency and to avoid overstatement of findings.

11.9 Role in decision making

The purpose of data interpretation under the GCCSP is to inform evidence-led decision making. Monitoring results guide prioritisation, restoration sequencing and selection of appropriate mitigation measures. Data are used to reduce uncertainty, not to claim definitive causation.

11.10 Use of monitoring data to evidence chalk stream pressures and inform action

Data generated under the Greater Cambridge Chalk Stream Project are designed to evidence chalk stream pressures through triangulation of chemical, physical and biological indicators, rather than reliance on any single parameter or dataset. The monitoring framework allows pressures to be identified, characterised and prioritised in a manner that is proportionate, transparent and grounded in established ecological understanding.

Sustained elevation of phosphate phosphorus, nitrate nitrogen or ammonia concentrations, identified through laboratory analysis and supported by weekly temporal trends, provides evidence of nutrient

enrichment and organic loading pressures relevant to chalk stream macrophytes and invertebrate communities. These signals are interpreted alongside Mean Trophic Rank survey results to assess whether nutrient conditions are ecologically consequential.

Patterns in dissolved oxygen, particularly where low spot measurements coincide with elevated temperatures or fine sediment retention, provide evidence of potential habitat stress affecting sensitive life stages of fish and invertebrates. Continuous temperature data strengthen this interpretation by identifying prolonged or repeated thermal stress events that may not be captured through weekly sampling alone.

Turbidity and deposited fine sediment measurements provide complementary evidence of sediment pressure. Turbidity identifies the timing and frequency of suspended sediment delivery, while deposited sediment data quantify retention within the channel and its potential to impair gravel permeability, spawning habitat and benthic community structure. Bank erosion measurements and fixed point photography support attribution of sediment sources and mechanisms.

Continuous total dissolved solids data provide an additional line of evidence for episodic ionic inputs, changes in dilution capacity or infrastructure influence, particularly when correlated with rainfall, flow context and weekly electrical conductivity measurements.

Upstream and downstream paired sampling allows these signals to be spatially contextualised, supporting distinction between background catchment pressures and localised in-reach influences.

Importantly, GCCSP data are not used to assert regulatory non-compliance or to attribute causation in isolation. Instead, the data provide a robust evidential basis for identifying where pressures are present, assessing their likely ecological relevance and determining where further investigation, targeted mitigation or restoration planning is justified.

In this way, the monitoring programme supports evidence-led decision making, reduces reliance on assumption or visual assessment alone and enables proportionate, targeted responses to the complex and cumulative pressures affecting chalk streams.

11.11 Dissolved Oxygen Risk and Trigger Framework

Dissolved oxygen dynamics are assessed using a tiered evidence framework designed to detect risk efficiently while deploying continuous instrumentation where it is most scientifically justified.

Weekly dissolved oxygen spot measurements are interpreted in conjunction with continuous temperature data, nutrient concentrations (phosphate-P and nitrate-N), sediment condition and biological indicators including WHTP and MTR.

Targeted continuous dissolved oxygen logging will be triggered where one or more of the following conditions are observed:

- a. Repeated weekly dissolved oxygen measurements below 80 percent saturation, or below 8 mg L⁻¹ during the growing season
- b. Sustained elevated water temperatures indicative of increased metabolic demand and reduced oxygen solubility
- c. Elevated nutrient concentrations consistent with increased biological oxygen demand

- d. Biological evidence of oxygen stress or organic enrichment, including depressed WHTP scores or shifts in macrophyte assemblage

Where deployed, continuous dissolved oxygen loggers will operate at sub-hourly resolution over a defined risk window to capture diel minima and recovery dynamics. This targeted deployment approach ensures that oxygen stress is evidenced robustly where it is ecologically relevant, without diluting monitoring effort across low-risk reaches.

12. Realistic costs, equipment, training and resource requirements

12.1 Purpose of cost transparency

Robust chalk stream monitoring requires sustained investment in people, equipment, training, analysis and governance. The Greater Cambridge Chalk Stream Project is explicit about these requirements to ensure transparency, manage expectations and avoid the risk of under-resourced monitoring that generates data of limited diagnostic value.

This section sets out the realistic costs associated with delivering high-quality, evidence-led monitoring and explains why lower-cost alternatives would not provide equivalent insight or defensibility.

12.2 Proportionality and allocation of resources

The GCCSP operates within a finite budget and has deliberately prioritised expenditure that maximises ecological insight and long-term value. A significant proportion of funding is allocated to citizen science coordination, training, laboratory analysis and data interpretation rather than to high-cost instrumentation alone.

This allocation reflects the project's objective of generating robust, interpretable datasets across multiple sites while building community capacity and sustaining long-term engagement.

12.3 Equipment selection and justification

Equipment used under the GCCSP is selected to balance analytical capability, reliability and affordability. Instruments are chosen because they can resolve chalk stream-relevant thresholds and produce repeatable data when used within defined protocols.

Higher-cost continuous monitoring systems were considered but rejected where their cost would have reduced spatial coverage, volunteer involvement or analytical capacity. The resulting equipment suite represents a deliberate, evidence-led compromise rather than a technical limitation.

12.4 Example indicative costs per monitoring group per annum

The table below provides an illustrative breakdown of the **indicative annual costs for a single monitoring group**, reflecting the equipment and infrastructure actually used under the GCCSP. Costs are approximate and based on current procurement and operational experience.

Cost category	Indicative annual cost (£)	Description
Field equipment allocation	1,500	Share of multiparameter meters, sampling equipment and calibration materials
ThinkSpeak temperature and TDS loggers	1,000	Logger purchase, maintenance and data transmission
Laboratory reagents and consumables	2,000	Nutrient, microbiological and sediment analysis reagents
Laboratory staff time	4,000	Sample processing, quality assurance and data validation
Volunteer training and coordination	3,000	Training delivery, supervision and support
Data management and storage	1,000	Secure storage, processing and analysis
Health and safety and waste disposal	1,000	Hazardous waste handling, PPE and compliance
Professional oversight and interpretation	3,000	Expert review, reporting and integration
Indicative total per group per annum	16,500	

This indicative figure reflects the true cost of producing data that are reliable, interpretable and suitable for informing management decisions.

12.5 Health, safety and responsible waste management

Monitoring under the GCCSP involves the use of chemical reagents and biological samples that require appropriate handling and disposal. The project therefore relies on university laboratory infrastructure to ensure compliance with health and safety requirements, including biosecure facilities, trained staff and hazardous waste disposal pathways.

This infrastructure is essential for protecting volunteers, staff and the environment and cannot be replicated safely through informal or home-based testing.

12.6 Training, competence and volunteer support

Volunteer participation is supported through structured training, supervision and ongoing support. This investment is essential to ensure data quality and volunteer safety and to avoid wasting volunteer time through poorly designed or unsupported monitoring.

Training costs reflect not only delivery time but the development and maintenance of protocols, risk assessments and quality assurance procedures.

12.7 Data management and storage

High-frequency and multi-parameter monitoring generates substantial volumes of data. Secure storage, processing and analysis infrastructure is therefore required to maintain data integrity, enable interpretation and support transparency.

Data management costs are an essential component of robust monitoring and are often underestimated or omitted in lower-cost programmes.

12.8 Why low-cost alternatives are insufficient

Monitoring programmes that rely solely on low-cost kits, infrequent sampling or unsupervised volunteer testing may appear economical but often fail to deliver data capable of diagnosing chalk stream pressures or informing restoration sequencing.

Such approaches risk generating misleading reassurance, misdirected intervention and poor value for money over the long term. The GCCSP approach avoids these risks by investing proportionately in the components that underpin data credibility.

12.9 Cost-effectiveness at project scale

At project scale, the GCCSP monitoring budget supports multiple sites and generates transferable evidence that informs catchment-scale planning and restoration. When viewed in this context, the cost per site and per dataset represents good value for money relative to the ecological and strategic insight delivered.

12.10 Summary

Robust chalk stream monitoring requires sustained investment across equipment, people, analysis and governance. The GCCSP approach represents a proportionate and transparent allocation of resources designed to maximise ecological insight, support citizen science participation and deliver evidence capable of informing defensible management decisions.

13. Conclusion and forward direction

The Greater Cambridge Chalk Stream Project water quality monitoring plan is founded on a clear recognition that chalk streams are among the most sensitive and complex freshwater systems in England. Their decline has not resulted from a single pressure or isolated failure, but from the cumulative interaction of nutrient enrichment, sediment dynamics, hydrological modification, urban runoff, habitat simplification and climate-driven stress.

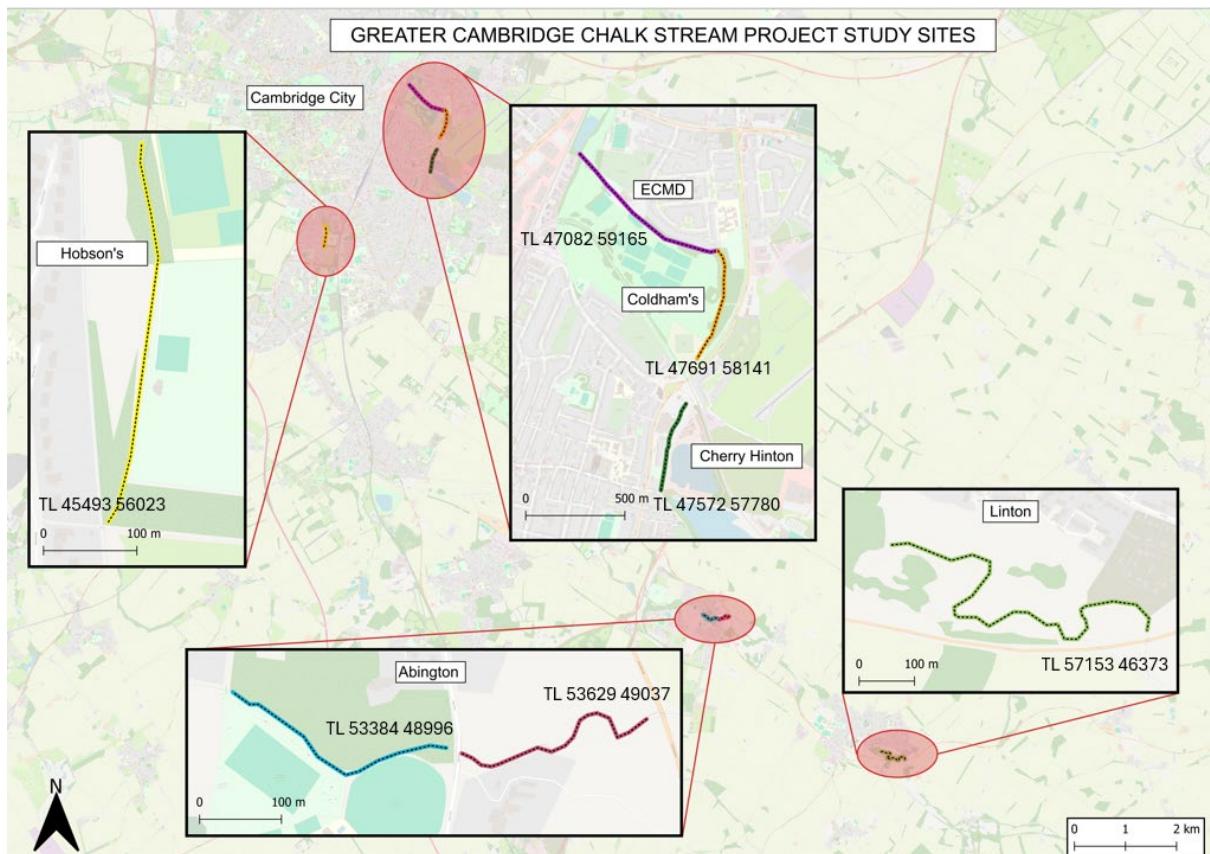
For over two decades, many chalk stream restoration efforts in Cambridgeshire and beyond have focused on in-channel works without resolving the underlying water quality and catchment pressures that ultimately determine ecological success. The evidence-led approach set out in this plan responds directly to that history by placing diagnosis before intervention and mechanism before assumption.

The monitoring framework deliberately integrates chemical, physical and biological evidence at spatial and temporal scales relevant to chalk stream ecology. Weekly citizen science sampling provides continuity and engagement, laboratory analysis delivers analytical precision, sediment monitoring

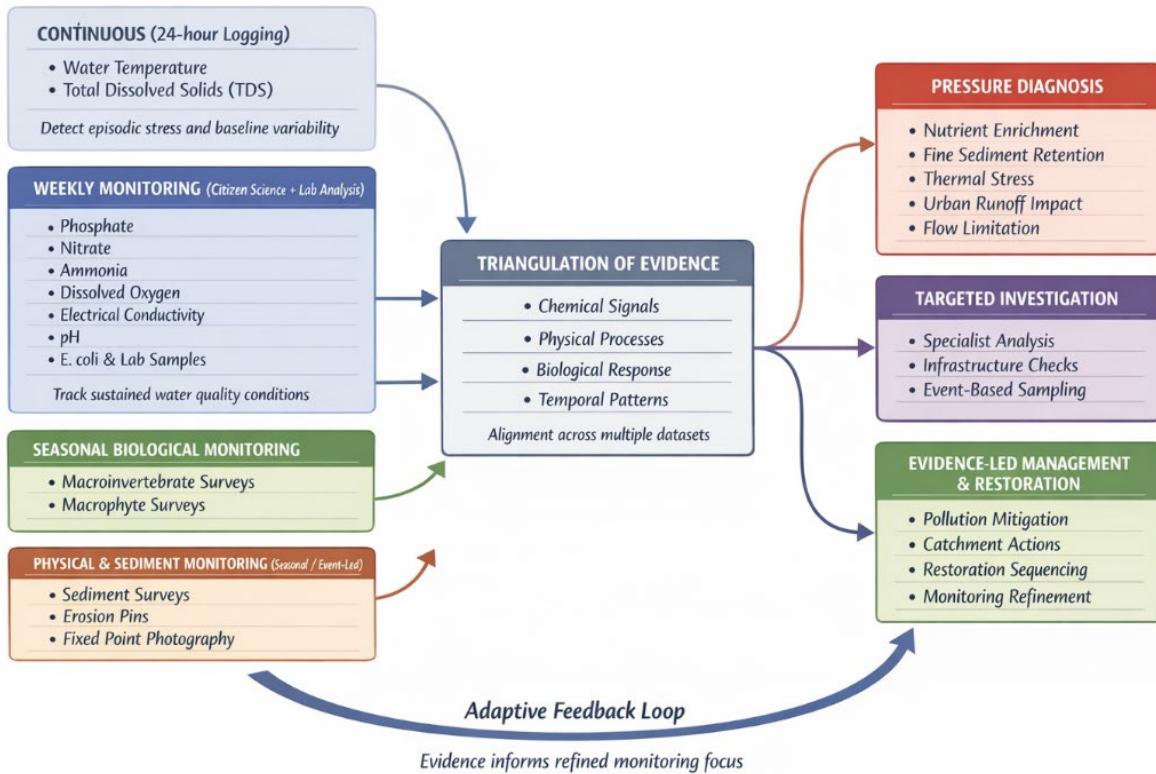
quantifies habitat constraint, biological indices integrate pressure over time and continuous temperature and TDS logging captures episodic stress that would otherwise remain undetected. No single dataset is relied upon in isolation. Interpretation is governed by triangulation, transparency and precaution.

The project is explicit about its limitations and resource constraints. Equipment selection, monitoring frequency and analytical scope reflect proportional decision making rather than technical ambition for its own sake. Where higher-cost systems were considered, the decision to prioritise spatial coverage, laboratory support and volunteer capacity has strengthened, not weakened, the overall diagnostic power of the programme.

Citizen science is embedded as a structured, supervised and valued component of evidence generation. Volunteer time is respected by ensuring that data collected are meaningful, interpretable and directly used to inform action. As capacity grows, the framework allows for progressive development of community autonomy without compromising data quality or safety.


Crucially, the monitoring plan is not static. It is adaptive by design. Evidence generated under the GCCSP is used to refine hypotheses, target further investigation and sequence restoration appropriately. Where uncertainty remains, it is acknowledged rather than obscured. Where signals converge, confidence in diagnosis increases.

Beyond individual sites, GCCSP case study data provide rare, high-resolution insight that strengthens catchment partnerships and supports the development of truly evidence-based catchment plans. By filling persistent data gaps and resolving ecological mechanisms, the project enables more effective prioritisation, better use of public funds and greater likelihood of sustainable chalk stream recovery.


In combination, these attributes make the GCCSP monitoring framework robust to technical critique and resilient to changing conditions. It does not promise simple answers. Instead, it provides the evidence needed to ask the right questions, make proportionate decisions and avoid repeating the mistakes of past restoration efforts.

This plan therefore represents not only a monitoring strategy, but a practical model for how sensitive chalk stream systems can be understood, protected and restored through sustained, collaborative and evidence-led action.

Map of GCCSP Case Study Chalk Stream Sites

Integrated GCCSP water quality monitoring framework and evidence flow

References

Allan, J.D. and Castillo, M.M. (2007). *Stream ecology: structure and function of running waters*. 2nd ed. Dordrecht: Springer.

Bilotta, G.S. and Brazier, R.E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. *Water Research*, 42(12), pp. 2849–2861.

Bunte, K. and Abt, S.R. (1996). *Sampling surface and subsurface particle-size distributions in wadable gravel- and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring*. Fort Collins: USDA Forest Service.

Collins, A.L. and Walling, D.E. (2007a). Fine-grained bed sediment storage within river channels: the River Exe basin, southwest England. *Hydrological Processes*, 21(11), pp. 1446–1458.

Collins, A.L. and Walling, D.E. (2007b). Sources of fine sediment recovered from river bed sediments and channel banks in the Exe basin, Devon, UK. *Geomorphology*, 88(1–2), pp. 1–14.

Conroy, E., Turner, J.N., Rymaszewicz, A., O'Sullivan, J.J., Bruen, M., Lawler, D.M. and Lally, H. (2016). Estimating the suspended sediment concentration and turbidity relationship. *Water Resources Research*, 52(7), pp. 5488–5507.

Duerdoh, C.P., Arnold, A., Murphy, J.F., Naden, P.S., Scarlett, P.M. and Collins, A.L. (2015). Assessment of a rapid method for quantitative reach-scale estimates of deposited fine sediment in rivers. *Geomorphology*, 230, pp. 37–50.

Environment Agency (2018). *River fine sediment risk assessment guidance*. Bristol: Environment Agency.

Environment Agency (2020). *Water Framework Directive classification: surface water status and objectives*. Bristol: Environment Agency.

Everall, N.C., Johnson, M.F., Wilby, R.L. and Bennett, C. (2018). Detecting the impacts of climate change on upland trout streams: evidence from long-term monitoring. *Hydrological Processes*, 32(20), pp. 3182–3197.

Harrison, S.S.C., Pretty, J.L., Shepherd, D.J., Hildrew, A.G., Smith, C., Hey, R.D. and Hardwick, P. (2004). The effect of instream rehabilitation structures on macroinvertebrates in lowland rivers. *Journal of Applied Ecology*, 41(6), pp. 1140–1154.

Hynes, H.B.N. (1970). *The ecology of running waters*. Liverpool: Liverpool University Press.

Lambert, C.P. and Walling, D.E. (1988). Measurement of channel storage of suspended sediment in a gravel-bed river. *Catena*, 15(1), pp. 65–80.

Lewis, J. (1996). Turbidity-controlled suspended sediment sampling for runoff-event load estimation. *Water Resources Research*, 32(7), pp. 2299–2310.

Mainstone, C.P. (2004). The impact of phosphorus on river ecology. *English Nature Research Report*, No. 512.

Mainstone, C.P. (2020). Chalk streams and phosphorus: evidence, thresholds and ecological response. *Freshwater Reviews*, 13(1), pp. 1–28.

Murphy, J.F., Jones, J.I., Pretty, J.L., Duerdorff, C.P., Hawczak, A., Arnold, A. and Naden, P.S. (2015). Development of a biotic index using stream macroinvertebrates to assess fine sediment pressure. *Freshwater Biology*, 60(7), pp. 1316–1332.

Newson, M.D. and Large, A.R.G. (2006). 'Natural' rivers, 'hydromorphological quality' and river restoration: a challenging new agenda. *Earth Surface Processes and Landforms*, 31(13), pp. 1606–1624.

Rice, S. and Church, M. (1996). Sampling surficial fluvial gravels: the precision of size distribution percentile estimates. *Journal of Sedimentary Research*, 66(3), pp. 654–665.

Sear, D.A., Wilcock, D., Robinson, M. and Fisher, K. (2014). Natural flood management: theory and practice. *Hydrological Processes*, 28(13), pp. 3720–3734.

Smith, B., Everard, M., Nicholls, D., and Sear, D. (2017). The ecological restoration of rivers. *River Research and Applications*, 33(7), pp. 1045–1056.

Walsh, C.J., Roy, A.H., Fominella, J.W., Cottingham, P.D., Groffman, P.M. and Morgan, R.P. (2005). The urban stream syndrome: current knowledge and the search for a cure. *Journal of the North American Benthological Society*, 24(3), pp. 706–723.

Wentworth, C.K. (1922). A scale of grade and class terms for clastic sediments. *The Journal of Geology*, 30(5), pp. 377–392.

Wharton, G., Mohajeri, S.H. and Righetti, M. (2017). The pernicious problem of stream restoration assessment: how to measure success. *River Research and Applications*, 33(2), pp. 233–241.

Wood, P.J. and Armitage, P.D. (1997). Biological effects of fine sediment in the lotic environment. *Environmental Management*, 21(2), pp. 203–217.